

TEST NUMBER: T-NL-XXXXX (XXXXXXXXX) GENDER: XYZ AGE: XX COLLECTED: XX/XX/XXXX RECEIVED: XX/XX/XXXX TESTED: XX/XX/XXXX TEST REF: TST-NL-XXXX PRACTITIONER:

XXXXXXXXXXXXXX

TEST NAME: Metabolomix+

Metabolomix+ 3200 Metabolomix+ - FMV Urine **Metabolomix+ Results Overview** Normal **Borderline** High Need Supplementation for High Need **Antioxidants** Vitamin A / Carotenoids Vitamin C Vitamin E / Tocopherols a-Lipoic Acid - Dose = 200 mg α-Lipoic Acid CoQ10 **B-Vitamins** Thiamin - B1 Riboflavin - B2 Niacin - B3 Pyridoxine - B6 Biotin - B7 Folic Acid - B9 Cobalamin - B12 **Minerals** Magnesium Manganese Molybdenum Zinc

Nordic Laboratories Aps

UK Office:

Nygade 6, 3.sal • 1164 Copenhagen K • Denmark Tlf. +45 33 75 10 00 11 Old Factory Buildings • Stonegate • E. Sussex TN5 7DU • UK Tel: +44 (0)1580 201 687 Page 1 of 10 www.nordic-labs.com info@nordic-labs.com

TEST NUMBERT-NL-XXXXX (XXXXXXXXX)GENDER:XYZAGE:XX

COLLECTED:XX/XX/XXXRECEIVED:XX/XX/XXXXTESTED:XX/XX/XXXX

TEST REF: TST-NL-XXXX

PRACTITIONER:

TEST NAME: Metabolomix+

		Daily		Provider	_
	Supplements	Recommended Intake (DRI)	Patient's Daily Recommendations	Daily Recommendations	
	Vitamin A / Carotenoids	2,333 IU	3,000 IU		
	Vitamin C	75 mg	250 mg		
	Vitamin E / Tocopherols	22 IU	100 IU		
	α-Lipoic Acid		200 mg		
	CoQ10		30 mg		
	B-Vitamins				
	Thiamin - B1	1.1 mg	25 mg		•
	Riboflavin - B2	1.1 mg	25 mg		
	Niacin - B3	14 mg	20 mg		
	Pyridoxine - B6	1.3 mg	25 mg		
	Biotin - B7	30 mcg	200 mcg		
	Folic Acid - B9	400 mcg	400 mcg		
	Cobalamin - B12	2.4 mcg	500 mcg		
	Minerals				
	Magnesium	320 mg	600 mg		•
	Manganese	1.8 mg	3.0 mg		
	Molybdenum	45 mcg	75 mcg		
	Zinc	8 mg	10 mg		
	Digestive Support				
	Probiotics		10 billion CFU		
	Pancreatic Enzymes		0 10		
	Other Vitamins				
	Vitamin D	600 IU			
	Amino Acid		Amino Acid	mg/day	
	Arginine		Methionine	404	
	Asparagine		Phenylalanine		
	Cysteine Glutamine		Serine Taurine		
	Glycine		Threonine		
	Histidine		Tryptophan		
	Isoleucine		Tyrosine	35	
	Leucine		Valine		
	Lysine	494	Valino		
	Recommendations for age and gender-specific supp comparing levels of nutrient functional need to optin the peer-reviewed literature. They are provided as g support of nutritional deficiencies only.	nal levels as described in	The Suggested Supplemental Sc ordering practitioner. Any applica to be determined by the ordering	ation of it as a therapeutic interv	
	Кеу)	
	٦	lormal Borderlii	ne High Need		
tic Laborat	tories Aps	LIK Office:			
dic Laborat	tories Aps I • 1164 Copenhagen K • Denmark	UK Office:	• Stonegate • E. Sussex TN		Page 2 o www.nordic-labs.c

PATIENT:	XX)	XXX	XXXX	XXXXXX	X
----------	-----	-----	------	--------	---

TEST NUMBER: T-NL-XXXXX (XXXXXXXXXX) GENDER: XYZ AGE: ΧХ

COLLECTED: XX/XX/XXXX RECEIVED: XX/XX/XXXX TESTED: XX/XX/XXXX TEST REF: TST-NL-XXXX

PRACTITIONER: XXXXXXXXXXXXXXX

TEST NAME: Metabolomix+

Metabolomix+ Interpretation At-A-Glance **Nutritional Needs**

Vitamin A / Carotenoids	Vitamin C X
3,000 IU 5,000 IU 10,000 IU Beta-carotene & other carotenoids are converted to vitamin A (retinol), involved in vision, antioxidant & immune function, gene expression & cell growth. Vitamin A deficiency may occur with chronic alcoholism, zinc deficiency, hypothyroidism, or oral contraceptives containing estrogen & progestin. Deficiency may result in night blindness, impaired immunity, healing & tissue regeneration, increased risk of infection, leukoplakia or keratosis. Food sources include cod liver oil, fortified cereals & milk, eggs, sweet potato, pumpkin, carrot, cantaloupe, mango, spinach, broccoli, kale & butternut squash.	250 mg 500 mg 1,000 mg Vitamin C is an antioxidant (also used in the regeneration of other antioxidants). It is involved in cholesterol metabolism, the production & function of WBCs and antibodies, and the synthesis of collagen, norepinephrine and carnitine. Deficiency may occur with oral contraceptives, aspirin, diuretics or NSAIDs. Deficiency can result in scurvy, swollen gingiva, periodontal destruction, loose teeth, sore mouth, soft tissue ulcerations, or increased risk of infection. Food sources include oranges, grapefruit, strawberries, tomato, sweet red pepper, broccoli and potato.
Vitamin E / Tocopherols	a-Lipoic Acid
100 IU 200 IU 400 IU Alpha-tocopherol (body's main form of vitamin E) functions as an antioxidant, regulates cell signaling, influences immune function and inhibits coagulation. Deficiency may occur with malabsorption, cholestyramine, colestipol, isoniazid, orlistat, olestra and certain anti-convulsants (e.g., phenobarbital, phenytoin). Deficiency may result in peripheral neuropathy, ataxia, muscle weakness, retinopathy, and increased risk of CVD, prostate cancer and cataracts. Food sources include oils (olive, soy, corn, canola, safflower, sunflower), eggs, nuts, seeds, spinach, carrots, avocado, dark leafy greens and wheat germ.	50 mg 100 mg 200 mg Lipoic acid plays an important role in energy production, antioxidant activity (including the regeneration of vitamin C and glutathione), insulin signaling, cell signaling and the catabolism of a-keto acids and amino acids. High biotin intake can compete with lipoic acid for cell membrane entry. Optimal levels of lipoic acid may improve glucose utilization and protect against diabetic neuropathy, vascular disease and age-related cognitive decline. Main food sources include organ meats, spinach and broccoli. Lesser sources include tomato, peas, Brussels sprouts and brewer's yeast.
CoQ10 X	Glutathione X
30 mg 60 mg 90 mg CoQ10 is a powerful antioxidant that is synthesized in the body and contained in cell membranes. CoQ10 is also essential for energy production & pH regulation. CoQ10 deficiency may occur with HMG-CoA reductase inhibitors (statins), several anti-diabetic medication classes (biguanides, sulfonylureas) or beta-blockers. Low levels may aggravate oxidative stress, diabetes, cancer, congestive heart failure, cardiac arrhythmias, gingivitis and neurologic diseases. Main food sources include meat, poultry, fish, soybean, canola oil, nuts and whole grains. Moderate sources include fruits, vegetables, eggs and dairy.	 Glutathione (GSH) is composed of cysteine, glutamine & glycine. GSH is a source of sulfate and plays a key role in antioxidant activity and detoxification of toxins. GSH requirement is increased with high-fat diets, cigarette smoke, cystinuria, chronic alcoholism, chronic acetaminophen use, infection, inflammation and toxic exposure. Deficiency may result in oxidative stress & damage, impaired detoxification, altered immunity, macular degeneration and increased risk of chronic illness. Food sources of GSH precursors include meats, poultry, fish, soy, corn, nuts, seeds, wheat germ, milk and cheese.
Plant-based Antioxidants	Кеу
 Oxidative stress is the imbalance between the production of free radicals and the body's ability to readily detoxify these reactive species and/or repair the resulting damage with anti-oxidants. Oxidative stress can be endogenous (energy production and inflammation) or exogenous (exercise, exposure to environmental toxins). Oxidative stress has been implicated clinically in the development of neurodegenerative diseases, cardiovascular diseases and chronic fatigue syndrome. Antioxidants may be found in whole food sources (e.g., brightly colored fruits & vegetables, green tea, turmeric) as well as nutriceuticals (e.g., resveratrol, EGCG, lutein, lycopene, ginkgo, milk thistle, etc.). 	 Function Causes of Deficiency Complications of Deficiency Food Sources

Nordic Laboratories Aps

Nygade 6, 3.sal • 1164 Copenhagen K • Denmark Tlf. +45 33 75 10 00

UK Office: 11 Old Factory Buildings • Stonegate • E. Sussex TN5 7DU • UK Tel: +44 (0)1580 201 687

Page 3 of 10 www.nordic-labs.com info@nordic-labs.com

ATIENT: X	$\mathbf{X}\mathbf{X}$	XXXX	XXXXX	XXXXXX

TEST NUMBER: T-NL-XXXXX (XXXXXXXXXX) **GENDER** XYZ AGE: XX

COLLECTED: XX/XX/XXXX RECEIVED: XX/XX/XXXX TESTED: XX/XX/XXXX

TEST REF: TST-NL-XXXX

PRACTITIONER XXXXXXXXXXXXXXXX

TEST NAME: Metabolomix+

Metabolomix+ Interpretation At-A-Glance

PA

Nutritional Needs

B-Vitamins	
Thiamin - B1	Pyridoxine - B6
10 mg 25 mg 50 mg B1 is a required cofactor for enzymes involved in energy production from food, and for the synthesis of ATP, GTP, DNA, RNA and NADPH. Low B1 can result from chronic alcoholism, diuretics, digoxin, oral contraceptives and HRT, or large amounts of tea & coffee (contain anti-B1 factors). B1 deficiency may lead to dry beriberi (e.g., neuropathy, muscle weakness), wet beriberi (e.g., cardiac problems, edema), encephalopathy or dementia. Food sources include lentils, whole grains, wheat germ, Brazil nuts, peas, organ meats, brewer's yeast, blackstrap molasses, spinach, milk & eggs.	 10 mg 25 mg 50 mg B6 (as P5P) is a cofactor for enzymes involved in glycogenolysis & gluconeogenesis, and synthesis of neurotransmitters, heme, B3, RBCs and nucleic acids. Low B6 may result from chronic alcoholism, long-term diuretics, estrogens (oral contraceptives and HRT), anti-TB meds, penicillamine, L-DOPA or digoxin. B6 deficiency may result in neurologic symptoms (e.g., irritability, depression, seizures), oral inflammation, impaired immunity or increased homocysteine. Food sources include poultry, beef, beef liver, fish, whole grains, wheat germ, soybean, lentils, nuts & seeds, potato, spinach and carrots.
Riboflavin - B2 10 mg 25 mg 50 mg B2 is a key component of enzymes involved in antioxidant function, energy production, detoxification, methionine metabolism and vitamin activation. Low B2 may result from chronic alcoholism, some anti-psychotic medications, oral contraceptives, tricyclic antidepressants, quinacrine or adriamycin. B2 deficiency may result in oxidative stress, mitochondrial dysfunction, low uric acid, low B3 or B6, high homocysteine, anemia or oral & throat inflammation. Food sources include milk, cheese, eggs, whole grains, beef, chicken, wheat germ, fish, broccoli, asparagus, spinach, mushrooms and almonds.	Biotin - B7 100 mcg 200 mcg 400 mcg Biotin is a cofactor for enzymes involved in functions such as fatty acid (FA) synthesis, mitochondrial FA oxidation, gluconeogenesis, and DNA replication & transcription. Deficiency may result from certain inborn errors, chronic intake of raw egg whites, long-term TPN use, anticonvulsants, high-dose B5, sulfa drugs & other antibiotics. Low levels may result in neurologic symptoms (e.g., paresthesias, depression), hair loss, scaly rash on face or genitals or impaired immunity. Food sources include yeast, whole grains, wheat germ, eggs, cheese, liver, meats, fish, wheat, nuts & seeds, avocado, raspberries, sweet potato and cauliflower.
Niacin - B3	Folic Acid - B9

F0 -----

	20 mg	30 mg	50 mg
B3 is used to form NAD and NADP	, involved in energy	production from	1 food, fatty
acid & cholesterol synthesis, cell sig	gnaling, DNA repai	& cell differenti	ation.

- bow B3 may result from deficiencies of tryptophan (B3 precursor), B6, B2 or Fe (cofactors in B3 production), or from long-term isoniazid or oral contraceptive use. B3 deficiency may result in pellagra (dermatitis, diarrhea, dementia), neurologic
- symptoms (e.g., depression, memory loss), bright red tongue or fatigue. Food sources include poultry, beef, organ meats, fish, whole grains, peanuts,
- seeds, lentils, brewer's yeast and lima beans.

Folic Acid - B9	X		
	400 mcg	800 mcg	1,200 mcg
Eolio opid plava a kov rala i	n oconzumos involvod ir	DNA and SAM	la avethacia

Folic acid plays a key role in coenzymes involved in DNA and SAMe synthe methylation, nucleic acids & amino acid metabolism and RBC production.

- Low folate may result from alcoholism, high-dose NSAIDs, diabetic meds, H2 blockers, some diuretics and anti-convulsants, SSRIs, methotrexate, trimethoprim, pyrimethamine, triamterene, sulfasalazine or cholestyramine.
- Folate deficiency can result in anemia, fatigue, low methionine, increased
- homocysteine, impaired immunity, heart disease, birth defects and CA risk.
- Food sources include fortified grains, green vegetables, beans & legumes.

Cobalamin - B12	I	I	I	I	×		1 1
	100	ncg		5	00 m	cg	1,000 mcg

- B12 plays important roles in energy production from fats & proteins, methylation, synthesis of hemoglobin & RBCs, and maintenance of nerve cells, DNA & RNA.
- Low B12 may result from alcoholism, malabsorption, hypochlorhydria (e.g., from atrophic gastritis, H. pylori infection, pernicious anemia, H2 blockers, PPIs), vegan diets, diabetic meds, cholestyramine, chloramphenicol, neomycin or colchicine.
- B12 deficiency can lead to anemia, fatigue, neurologic symptoms (e.g., paresthesias, memory loss, depression, dementia), methylation defects or chromosome breaks.
- Food sources include shellfish, red meat poultry, fish, eggs, milk and cheese.

Nordic Laboratories Aps

Nygade 6, 3.sal • 1164 Copenhagen K • Denmark Tlf. +45 33 75 10 00

UK Office:

11 Old Factory Buildings • Stonegate • E. Sussex TN5 7DU • UK Tel: +44 (0)1580 201 687

Page 4 of 10 www.nordic-labs.com info@nordic-labs.com

	v	VV	VV	vv	VV۱	νν	$\mathbf{v}\mathbf{v}\mathbf{v}$	XXX
ATIENT:	~	$\mathbf{\Lambda}\mathbf{\Lambda}$	$\mathbf{\Lambda}\mathbf{\Lambda}$	$\mathbf{\Lambda}\mathbf{\Lambda}$	$\mathbf{\Lambda}\mathbf{\Lambda}\mathbf{J}$	\mathbf{N}	$\mathbf{\Lambda}\mathbf{\Lambda}$	$\mathbf{\Lambda}\mathbf{\Lambda}\mathbf{\Lambda}$

TEST NUMBER: T-NL-XXXXX (XXXXXXXXX) GENDER: XYZ AGE: XX COLLECTED: XX/XX/XXXX RECEIVED: XX/XX/XXXX TESTED: XX/XX/XXXX

TEST REF: TST-NL-XXXX

PRACTITIONER:

TEST NAME: Metabolomix+

Metabolomix+ Interpretation At-A-Glance

PA

Nutritional Needs

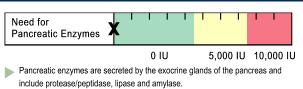
Minerals

Manganese	×			
		3.0 mg	5.0 mg	7.0 mg

- Manganese plays an important role in antioxidant function, gluconeogenesis, the urea cycle, cartilage & bone formation, energy production and digestion.
- Impaired absorption of Mn may occur with excess intake of Fe, Ca, Cu, folic acid, or phosphorous compounds, or use of long-term TPN, Mg-containing antacids or laxatives.
- Deficiency may result in impaired bone/connective tissue growth, glucose & lipid dysregulation, infertility, oxidative stress, inflammation or hyperammonemia.
- Food sources include whole grains, legumes, dried fruits, nuts, dark green leafy vegetables, liver, kidney and tea.

Molybdenum 🗙	, I	I		I	I	I	I		I
		75 m	ncg		15	50 m	cg	300	mcg

- Molybdenum is a cofactor for enzymes that convert sulfites to sulfate, and nucleotides to uric acid, and that help metabolize aldehydes & other toxins.
- Low Mo levels may result from long-term TPN that does not include Mo.
- Mo deficiency may result in increased sulfite, decreased plasma uric acid (and antioxidant function), deficient sulfate, impaired sulfation (detoxification), neurologic disorders or brain damage (if severe deficiency).
- Food sources include buckwheat, beans, grains, nuts, beans, lentils, meats and vegetables (although Mo content of plants depends on soil content).


Magnesium		X					
	400 mg	600 mg	800 mg				
Magnesium is involved in >300 metabolic reactions. Key areas include energy production, bone & ATP formation, muscle & nerve conduction and cell signaling.							
Deficiency may occur with malabsorption, alcoholism, hyperparathyroidism, renal disorders (wasting), diabetes, diuretics, digoxin or high doses of zinc.							
Low Mg may result in muscle weakness/spasm, constipation, depression, hypertension, arrhythmias, hypocalcemia, hypokalemia or personality changes.							
Food sources include dark I grains, chocolate, milk, nuts	, ,		blished				

Zinc	×	1 1	Ι	I	I	I	I	I	
		10 n	ng		2	0 mg)	30 i	ng

- Zinc plays a vital role in immunity, protein metabolism, heme synthesis, growth & development, reproduction, digestion and antioxidant function.
- Low levels may occur with malabsorption, alcoholism, chronic diarrhea, diabetes, excess Cu or Fe, diuretics, ACE inhibitors, H2 blockers or digoxin.
- Deficiency can result in hair loss and skin rashes, also impairments in growth & healing, immunity, sexual function, taste & smell and digestion.
- Food sources include oysters, organ meats, soybean, wheat germ, seeds, nuts, red meat, chicken, herring, milk, yeast, leafy and root vegetables.

Digestive Support

	10 B CFU	25 B CFU						
Probiotics have many functions. These include: production of some B vitamins and vitamin K; enhancement of digestion & absorption; decreasing severity of diarrheal illness; modulation of immune function & intestinal permeability.								
Alterations of gastrointestinal microflora may result from C-section delivery, antibiotic use, improved sanitation, decreased consumption of fermented foods, and use of certain drugs.								
Some of the diseases associated with microflora imbalances include: IBS, IBD, fibromyalgia, chronic fatigue syndrome, obesity, atopic illness, colic and cancer.								
Food sources rich in probiot	ics are voqurt, kefir and	fermented food	ds.					

- Pancreatic exocrine insufficiency may be primary or secondary in nature. Any indication of insufficiency warrants further evaluation for underlying cause (i.e., celiac disease, small intestine villous atrophy, small bowel bacterial overgrowth).
- A high functional need for digestive enzymes suggests that there is an impairment related to digestive capacity.
- Determining the strength of the pancreatic enzyme support depends on the degree of functional impairment. Supplement potency is based on the lipase units present in both prescriptive and non-prescriptive agents.

Nordic Laboratories Aps

Nygade 6, 3.sal • 1164 Copenhagen K • Denmark Tlf. +45 33 75 10 00

UK Office: 11 Old Factory Buildings • Stonegate • E. Sussex TN5 7DU • UK Tel: +44 (0)1580 201 687

Page 5 of 10 www.nordic-labs.com info@nordic-labs.com

ATIENT:	V	V١	/\	/\	/\	/\	/\	~`	/\	~`	/\	/\	/\	/\	/\	/\	/
ATIENT:	Λ	~/		V	V	V	V	\mathbf{v}	V	\mathbf{v}	\mathbf{v}	V	V	\mathbf{v}	V	\mathbf{v}	

TEST NUMBER: T-NL-XXXXX (XXXXXXXXX) GENDER: XYZ AGE: XX COLLECTED: XX/XX/XXXX RECEIVED: XX/XX/XXXX TESTED: XX/XX/XXXX TEST REF: TST-NL-XXXX

PRACTITIONER:

TEST NAME: Metabolomix+

Metabolomix+ Interpretation At-A-Glance

PA

Functional Imbalances

- Mitochondria are a primary site of generation of reactive oxygen species. Oxidative damage is considered an important factor in decline of physiologic function that occurs with aging and stress.
- Mitochondrial defects have been identified in cardiovascular disease, fatigue syndromes, neurologic disorders such as Parkinson's and Alzheimer's disease, as well as a variety of genetic conditions. Common nutritional deficiencies can impair mitochondrial efficiency.

- Methyl tert-Butyl Ether (MTBE) is a common gasoline additive used to increase octane ratings, and has been found to contaminate ground water supplies where gasoline is stored. Inhalation of MTBE may cause nose and throat irritation, as well as headaches, nausea, dizziness and mental confusion. Animal studies suggest that drinking MTBE may cause gastrointestinal irritation, liver and kidney damage and nervous system effects.
- Styrene is classified by the US EPA as a "potential human carcinogen," and is found widely distributed in commercial products such as rubber, plastic, insulation, fiberglass, pipes, food containers and carpet backing.
- Levels of these toxic substances should be examined within the context of the body's functional capacity for methylation and need for glutathione.

- Need for Methylation
- Methylation is an enzymatic process that is critical for both synthesis and inactivation. DNA, estrogen and neurotransmitter metabolism are all dependent on appropriate methylation activity.
- B vitamins and other nutrients (methionine, magnesium, selenium) functionally support catechol-O-methyltransferase (COMT), the enzyme responsible for methylation.

Nordic Laboratories Aps

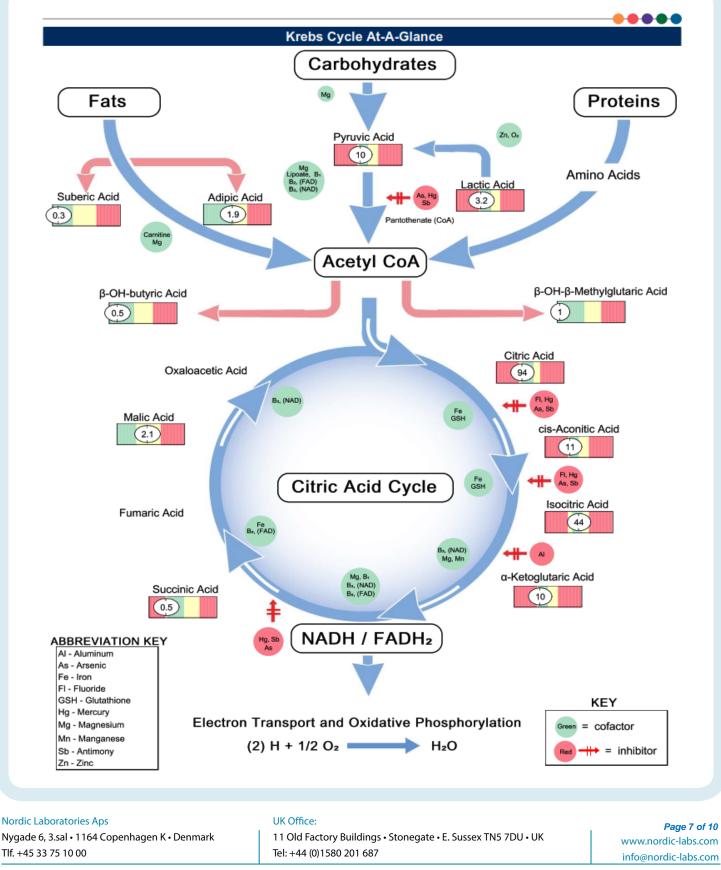
Nygade 6, 3.sal • 1164 Copenhagen K • Denmark Tlf. +45 33 75 10 00

UK Office:

11 Old Factory Buildings • Stonegate • E. Sussex TN5 7DU • UK Tel: +44 (0)1580 201 687 Page 6 of 10 www.nordic-labs.com info@nordic-labs.com

TIENT:	X	X)	(X	X)	X	XX	XX	XX	XXX	(

TEST NUMBER T-NL-XXXXX (XXXXXXXXXX) GENDER: XYZ AGE: XX


PAT

COLLECTED: XX/XX/XXXX RECEIVED: XX/XX/XXXX TESTED: XX/XX/XXXX TEST REF: TST-NL-XXXX

PRACTITIONER:

TEST NAME: Metabolomix+

ATIENT:	Х	$\mathbf{)}$	O	O	()	O	()	O	O	O	()	O	O	O	O	O	X	(

TEST NUMBER: T-NL-XXXXX (XXXXXXXXXX) GENDER: XYZ AGE: XX COLLECTED: XX/XX/XXXX RECEIVED: XX/XX/XXXX TESTED: XX/XX/XXXX

TEST REF: TST-NL-XXXX

PRACTITIONER:

TEST NAME: Metabolomix+

Metabolic Analysis Markers- FMV Urine Methodology: GCMS, LC/MS/MS, Alkaline Picrate

PA

Malabsorptio			larkers								
Malabsorption Mar	-		erence Range								
Indoleacetic Acid (IAA)	0.6	Ttore	<= 4.2								
Phenylacetic Acid (PAA)	0.04		<= 0.12								
Bacterial Dysbiosis	Markers		IJ								
Dihydroxyphenylpropionic Acid (DHPPA)	0.3		<= 5.3								
3-Hydroxyphenylacetic Acid	0.4		<= 8.1								
4-Hydroxyphenylacetic Acid	2		<= 29								
Benzoic Acid	(0.05	<= 0.05								
Hippuric Acid			<= 603								
Yeast / Fungal Dysbiosis Markers											
Arabinose			<= 96								
Citramalic Acid	0.4		<= 5.8								
Tartaric Acid			<= 15								
Cellular Energy & Mitochondrial Metabolites											
Carbohydrate Meta			erence Range								
Lactic Acid	3.2		1.9-19.8								
Pyruvic Acid	10		7-32								
β-OH-Butyric Acid (BHBA)	0.5		<= 2.8								
Energy Metabolism											
Citric Acid	94		40-520								
Cis-Aconitic Acid	11		10-36								
Isocitric Acid	44		22-65								
α-Ketoglutaric Acid (AKG)	10		4-52								
Succinic Acid	0.5		0.4-4.6								
Malic Acid	2.1)	<= 3.0								
β-OH-β-Methylglutaric Acid (HMG)			<= 15								
Fatty Acid Metaboli	sm										
Adipic Acid	1.9)	<= 2.8								
Suberic Acid	0.3		<= 2.1								
Creati	nine Concent	ratio	n								
			rence Range								
Creatinine +	8.8		3.1-19.5 mmol/L								

All biomarkers reported in mmol/mol creatinine unless otherwise noted.

Neurotransmitter Metabolites										
	Refe	erence Range								
Vanilmandelic Acid	1.4	0.4-3.6								
Homovanillic Acid	1.6	1.2-5.3								
5-OH-indoleacetic Acid	4.5	3.8-12.1								
3-Methyl-4-OH-phenylglycol	0.15	0.02-0.22								
Kynurenic Acid	0.3	<= 7.1								
Quinolinic Acid	0.3	<= 9.1								
Kynurenic / Quinolinic Ratio	1.00	>= 0.44								

Vitamin Markers **Reference Range** (0.4 α-Ketoadipic Acid <= 1.7 0.24 <= 0.97 α-Ketoisovaleric Acid α-Ketoisocaproic Acid (0.87) <= 0.89 (0.4) α-Keto-β-Methylvaleric Acid <= 2.1 Formiminoglutamic Acid (FIGlu) (0.7) <= 1.5 0.43 Glutaric Acid <= 0.51 (0.4)<= 3.7 Isovalerylglycine 0.5 <= 1.9 Methylmalonic Acid (0.28) <= 0.96 Xanthurenic Acid (16) 3-Hydroxypropionic Acid 5-22 3-Hydroxyisovaleric Acid 2 <= 29

Toxin & Detoxification Markers										
Reference Range										
α-Ketophenylacetic Acid (from Styrene)	0.38	<= 0.46								
α-Hydroxyisobutyric Acid (from MTBE)	0.5	<= 6.7								
Orotic Acid	0.36	0.33-1.01								
Pyroglutamic Acid	26	16-34								

Tyrosine Metabolism

	Re	eference Range
Homogentisic Acid	2	<= 19
2-Hydroxyphenylacetic Acid	0.37	<= 0.76

Metabolic Analysis Reference Ranges are Age Specific

The performance characteristics of all assays have been verified by Genova Diagnostics, Inc. Unless otherwise noted with •, the assay has not been cleared by the U.S. Food and Drug Administration.

Nordic Laboratories Aps

Nygade 6, 3.sal • 1164 Copenhagen K • Denmark Tlf. +45 33 75 10 00 UK Office: 11 Old Factory Buildings • Stonegate • E. Sussex TN5 7DU • UK Tel: +44 (0)1580 201 687

Page 8 of 10 www.nordic-labs.com info@nordic-labs.com

	VV	/V)	٧V١	ννν	/VVV	XXXXXX	7
ATIENT:	^		$\mathbf{\Lambda}\mathbf{\Lambda}$	$\mathbf{\Lambda}\mathbf{\Lambda}$			

TEST NUMBER: T-NL-XXXXX (XXXXXXXXXX) GENDER: XYZ AGE: XX COLLECTED:XX/XX/XXXXRECEIVED:XX/XX/XXXXTESTED:XX/XX/XXXX

TEST REF: TST-NL-XXXX

PRACTITIONER:

TEST NAME: Metabolomix+

Amino Acids Analysis Markers - FMV Urine Methodology: LC/MS/MS, Alkaline Picrate

P

Nutritionally Essential Amino Acids										
		Refe	erence Range							
	19		3-43							
(163		124-894							
	19		3-28							
	26		4-46							
(29		11-175							
(3		2-18							
	23		8-71							
	31		21-424							
	69		17-135							
	19		5-53							
	33		7-49							
		19 163 (19) (26) (29) (3) (23) (31) (69) (19) (19)	Refe 19 163 19 26 29 3 29 3 29 3 29 3 29 3 29 3 29 3 29 3 29 3 29 3 29 3 29 3 29 3 29 3 20 29 3 20 29 29 29 3 20 20 20 20 20 20 20 20 20 20							

Nonessential Protein Amino Acids

Amino Acid	Reference Range				
Alanine	63		63-356		
Asparagine	40		25-166		
Aspartic Acid	13		<= 14		
Cysteine (FMV urine)	16		8-74		
Cystine (FMV Urine)	19		10-104		
γ-Aminobutyric Acid	3		<= 5		
Glutamic Acid	15		4-27		
Glutamine	188		110-632		
Proline	6		1-13		
Tyrosine	30		11-135		

Creatinine Concentration

	I	Reference Range
Creatinine •	7.1	3.1-19.5 mmol/L

Amino Acid reference ranges are age specific.

The performance characteristics of all assays have been verified by Genova Diagnostics, Inc. Unless otherwise noted with \bullet , the assays have not been cleared by the U.S. Food and Drug Administration.

All biomarkers reported in micromol/g creatinine unless otherwise noted.

Intermediary Metabolites					
B Vitamin Markers	Reference Range				
α-Aminoadipic	19	2-47			
α-Amino-N-butyric Acid	15	2-25			
β-Aminoisobutyric Acid	16	11-160			
Cystathionine	15	2-68			
3-Methylhistidine	50	44-281			

Urea Cycle Markers

Citrulline	1.3	0.6-3.9
Ornithine	15	2-21
Urea ◆	357	168-465 mmol/g creatinine

Glycine/Serine Metabolites

Glycine	138	95-683
Serine	69	40-163
Ethanolamine	73	50-235
Phosphoethanolamine	4	1-13
Phosphoserine	6	3-13
Sarcosine	0.5	<= 1.1

Dietary Peptide Related Markers

		Reference Range
Anserine (dipeptide)	18.8	0.4-105.1
Carnosine (dipeptide)	15	1-28
1-Methylhistidine	45	38-988
β-Alanine	15	<= 22

Nordic Laboratories Aps

Nygade 6, 3.sal • 1164 Copenhagen K • Denmark Tlf. +45 33 75 10 00

UK Office: 11 Old Factory Buildings • Stonegate • E. Sussex TN5 7DU • UK Tel: +44 (0)1580 201 687

Page 9 of 10 www.nordic-labs.com info@nordic-labs.com

	V	/V\	/	/VV	$\mathbf{v}\mathbf{v}\mathbf{v}$	vvvv	VVVV
TIENT:	Λ	\mathbf{X}	\mathbf{X}	$\mathbf{\nabla}$	$\mathbf{\Lambda}\mathbf{\Lambda}$	^^/	XXXX

TEST NUMBER:T-NL-XXXXX (XXXXXXXXX)GENDER:XYZAGE:XX

COLLECTED: XX/XX/XXXX RECEIVED: XX/XX/XXXX TESTED: XX/XX/XXXX TEST REF: TST-NL-XXXX

PRACTITIONER:

TEST NAME: Metabolomix+

Oxidative Stress Markers - FMV Urine

Methodology: thiobarbituric acid reactive substances (TBARS), Alkaline Picrate, Hexokinase/G-6-PDH, LC/MS/MS

Oxidative Stress Markers				
Reference Range				
Lipid Peroxides (urine)	8.3)	<=10.0 micromol/g Creat.	
8-OHdG (urine)	5		<=15 mcg/g Creat.	

PA

Lab Comments

The performance characteristics of all assays have been verified by Genova Diagnostics, Inc. Unless otherwise noted with [•], the assay has not been cleared by the U.S. Food and Drug Administration.

Nordic Laboratories Aps Nygade 6, 3.sal • 1164 Copenhagen K • Denmark Tlf. +45 33 75 10 00 UK Office:

11 Old Factory Buildings • Stonegate • E. Sussex TN5 7DU • UK Tel: +44 (0)1580 201 687 Page 10 of 10 www.nordic-labs.com info@nordic-labs.com